6th Grade Introduction to Chemistry

Chapter 5: Chemical Reactions

Lesson 1 (Observing Chemical Change)

<u>Atom</u> – the basic particle from which all elements are made

Parts of an Atom:

- proton (p⁺) small <u>positively</u> charged particles that are found <u>in the nucleus</u> of an atom.
- neutron (n) a small particle <u>in the nucleus</u> of an atom with <u>no</u> electrical charge. (It is <u>neutral</u>.)
- electron (e[−]) a tiny <u>negatively</u> charged particle that moves around the <u>outside of the nucleus</u> of an atom.
 - This is the only part of an atom that can leave the atom.

<u>Nucleus</u> – the dense central core of an atom that contains <u>protons</u> and <u>neutrons</u>. <u>Neutral</u> – having no electrical charge

- An atom with equal numbers of protons (positive charge) and electrons (negative charge) is neutral.
- The positive charges from the protons cancel out the negative charges from the electrons.
- Atoms tend to have a neutral charge unless something has happened to them.

<u>Ion</u> – an atom that has become electrically charged.

- If an atom gains electrons, it becomes negatively charged. (It now has more negative charges than positive charges.)
- If an atom loses electrons, it becomes positively charged. (It now has more positive charges than negative charges.)

Examples of ion symbols:

- Na⁺ (lost 1 electron)
- Mg²⁺ (lost 2 electrons)
- S2- (gained 2 electrons)
- Al³⁺ (lost 3 electrons)

Atoms and Bonding:

- 1. Atoms bond with other atoms to form molecules by gaining, losing, or sharing electrons with other atoms.
- This creates atoms of opposite charges (+ and) that are held together by a force of attraction (a chemical bond).
- <u>Physical property</u> a characteristic of a substance that can be observed or measured without changing it into another substance.

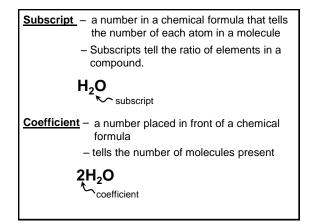
Examples:		
State of matter (solid, liquid, or gas)	freezing point	melting point
boiling point	density	color
size	shape	weight
mass	hardness	flexibility
ability to conduct heat or electricity	temperature	texture

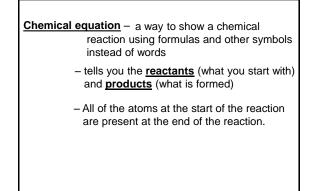
<u>Chemical p</u>	property – a characteristic of a substance that describes its ability to change into different substances
	 To observe the chemical properties of a substance, you must try to change it into another substance.
Examples:	rusting tarnishing flammability light sensitivity

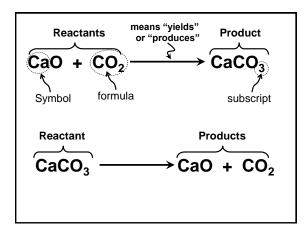
 Physical change – alters the form or appearance of matter, but does not turn any substance in the matter into a r substance A substance that undergoes a physical change is still the sam substance after the change. 			s not turn any e matter into a new at undergoes a je is still the same
Examples:	melting	freezing	evaporating
	breaking	bending	dissolving

<u>Chemical c</u>	 change – a change in matter that produces one or more new substances also called a chemical reaction The new substances have new and different properties.
Examples:	combustion electrolysis oxidation tarnishing

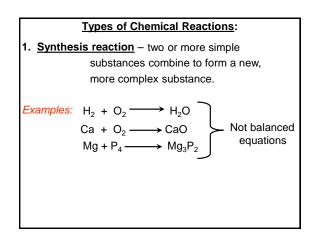
Bonding and Chemical Change:

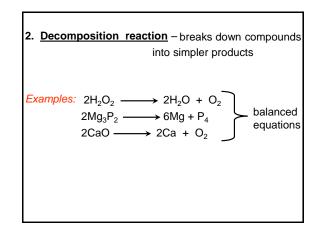

- 1. During chemical reactions, existing bonds break and new bonds form.
- 2. This breaks down existing molecules and forms new substances.
- Reactants substances that undergo chemical changes
- <u>Products</u> the new substances formed from a chemical change (chemical reaction)

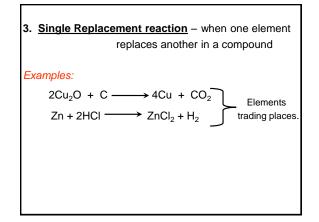

How do you decide a chemical reaction has occurred?

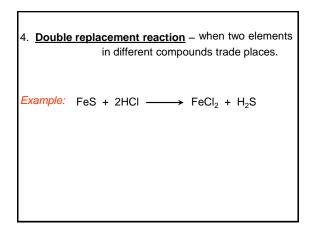

- 1. A precipitate may have formed.
 - <u>precipitate</u> a solid that sometimes forms when liquids are mixed
- 2. A gas may be produced. (bubbles form)
- 3. A sound may be produced. (fizzing, crackling, or a loud boom)
- 4. The color may change. (Newspapers turn yellow over time.)
- 5. The odor may change. (Toast smells different than bread.)
- 6. Smoke may be produced.
- 7. Light may be given off. (Sparks or flames arise.)
- 8. The temperature may change. (warmer or colder)
- 9. A new substance has been produced.

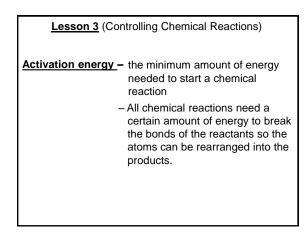
Exothermic reaction – a reaction that releases (produces, or gives off) energy – usually in the form of heat – This would feel warm to the touch.			
Endothermic reaction – a reaction that absorbs (takes in) energy, usually in the form of heat – This would feel cold to the touch as it takes in heat from your hand.			

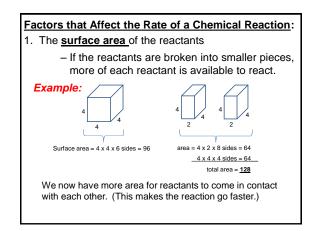

Lesson 2 (Describing Chemical Reactions)						
<u>Chemical symbol</u> – a one or two letter representation of an element – The first letter is always capitalized.						
		- 1110 1		110 IS a	iways ca	apitalizeu.
Examples:	К	Na	CI	Xe	Ν	
<u>Chemical formula</u> – symbols that show the elements in a compound and the ratio of atoms						
Examples:	H_2O	CO_2	H ₂	SO_4		
	O ₂	C ₁₂ H	₂₂ O ₁₁			

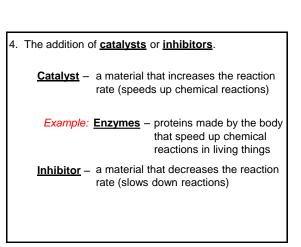












- 2. The temperature of the reactants
 - Increasing the temperature speeds up reactions.
 - Decreasing the temperature slows down reactions.
- 3. The concentration of the reactants
 - Increasing the concentration speeds up reactions by supplying more particles to react.

<u>concentration</u> – the amount of substance in a certain volume

example: A gallon of water with 2 cups of sugar added has a higher concentration (is more concentrated) than a gallon of water with 1 cup of sugar added.

