$6^{\text {th }}$ Grade Introduction to Chemistry

Chapter 2: Solids, Liquids, and Gases

Amorphous solids - the particles are not arranged in a regular pattern

- become softer and softer as they are heated until they are a liquid

Examples: butter, glass, plastic, rubber
Liquid - state of matter with definite volume, but no definite shape

- A liquid takes up the same amount of space (volume) no matter what container it is in.
- The particles are still packed close together, but can move around each other freely. (No shape of its own.)
viscosity - a liquid's resistance to flowing
- depends on the size, shape, and the amount of attractive forces holding the particles in place.
- The stronger the attraction between particles, the harder it is for the liquid to flow.
- High viscosity liquids flow slowly. (honey)
- Low viscosity liquids flow easily. (water)

Lesson 1 (States of Matter)

Solid - a state of matter with a definite shape and a definite volume

- The particles in a solid are generally packed close together.
- The particles vibrate slightly about their fixed positions.

Crystalline solid - the particles form a regular, repeating pattern

- melt suddenly when they reach a certain temperature
Examples: salt, sugar, snow, ice

Fluid - a substance that flows, or changes shape easily

- Liquids and gases are fluids.

Gas - a state of matter that has no definite shape and no definite volume

- Particles can move in all directions and spread to fill all the available space.

Three Factors to Consider About Gases:

1. volume
2. Pressure
3. Temperature

Volume - the amount of space matter fills

- The container decides the volume and shape of a gas as the particles can just move farther apart or closer together.
Pressure - the force of the outward push of gas particles on the walls of the container divided by the area of the walls.
- Gas particles are in constant motion and collide with each other and push on the walls of their container.

Lesson 2 (Changes of State)

A change in state of any substance involves an increase or decrease in thermal energy.

Melting - a change in state from a solid to a liquid as a solid gains enough thermal energy

- As thermal energy is absorbed, the particles of a solid move faster, until they vibrate so fast that they break free from their fixed position.
- The particles can now move more freely around each other. (liquid)

$$
\text { Pressure }=\frac{\text { Force }}{\text { Area }}
$$

Temperature - a measure of the average energy of motion of the particles (a measure of how fast the particles are moving)

- The faster the particles are moving, the greater their energy and the higher the temperature.
- A thermometer is like a speedometer for particles.

Melting point - the specific temperature at which a solid (crystalline) turns to a liquid

- Some solids have lower melting points than others. (They melt easier.)

Freezing - a change in state from a liquid to a solid as a liquid loses enough thermal energy.

- As thermal energy is lost, the particles move slower until they are moving so slowly they begin to take on a fixed position. (solid)
- The freezing point of water is the same as its melting point. ($0^{\circ} \mathrm{C}$ or $32^{\circ} \mathrm{F}$)

Vaporization - a change in state from a liquid to a gas as a liquid gains enough thermal energy

Water vapor - water as a gas, rather than a liquid
Types of Vaporization:

1. evaporation
2. boiling

Evaporation - vaporization that takes place only on the surface of a liquid

- Thermal energy is gained, or absorbed, by the particles of the liquid.
- Particles move faster until the fastest ones can break free into the air. (They overcome the force of attraction that holds water molecules together.)

Boiling - vaporization that takes place both below and at the surface of a liquid

Boiling point - the specific temperature at which a liquid boils

- Different liquids have different boiling points.
- The air pressure above the liquid affects the boiling point of a liquid.
(Water boils at a lower temperature in the mountains where the air pressure is lower.)

Condensation - a change in state from a gas to a liquid as the gas loses enough thermal energy

- When water vapor molecules (gas) touch a cold surface they lose thermal energy.
- This makes them move slower until the force of attraction causes them to regroup into a liquid again.

Examples: water droplets on the outside of a cold drink clouds forming in the atmosphere moisture on your bathroom mirror

Sublimation - a change in state from a solid directly to a gas, without passing through the liquid state

Examples: ice cubes "shrinking" in the freezer snow disappearing when it's too cold to melt

Pressure and Temperature Relationship:

1. When the temperature of a gas at a constant (unchanged) volume is increased, the pressure of the gas increases.

- Particles move faster and hit the walls of the rigid container more often and with more force.

2. When the temperature of a gas at a constant (unchanged) volume is decreased, the pressure of the gas decreases.

- Particles move slower and hit the walls of the container less often and with less force.
temperature \uparrow (then) pressure \uparrow
temperature \downarrow (then) pressure \downarrow

Volume and Temperature Relationship:

Charles's Law - When the temperature of a gas is increased at a constant pressure, the volume increases.

- When the temperature of a gas is decreased at a constant pressure, the volume decreases.
- As you heat a gas, the particles move faster, hitting the container with more force that increases the volume of the container. (The opposite happens when you cool a gas.)
- This is the law that says a gas expands when it is heated and contracts (shrinks) when cooled.
$\begin{array}{ll}\text { temperature } \uparrow & \text { (then) volume } \uparrow \\ \text { temperature } \downarrow & \text { (then) volume } \downarrow\end{array}$

Pressure and Volume Relationship:

Boyle's Law - When the pressure of a gas at a constant temperature is increased, the volume of the gas decreases.

- When the pressure is decreased, the volume of a gas increases.
- This is the law that says you can squeeze gas particles into a smaller space to increase the pressure they exert (apply).
$\begin{array}{lll}\text { volume } \downarrow & \text { (then) pressure } & \uparrow \\ \text { volume } \uparrow & \text { (then) pressure } & \downarrow\end{array}$

